Overarching Essential Questions for Mathematics

General Mathematics Thinking & Problem-Solving

- How can we use mathematics to solve real-world problems?
- Why is it important to estimate or approximate answers?
- How do we decide which mathematical tools or strategies to use in a given situation?
- What does it mean for a mathematical solution to be 'reasonable' or 'efficient'?
- How can patterns help us understand and predict mathematical relationships?
- What do effective problem solvers do when they get stuck?
- How do mistakes help us learn in mathematics?

Numbers & Operations

• How does our number system work?

• Why do we need different types of numbers (whole numbers, fractions, decimals, negative numbers)?

- What are the different ways we can represent numbers, and why does it matter?
- How do operations affect numbers, and how are they related to one another?
- How can we use number relationships to make calculations easier?
- Why do we use different strategies to compute numbers mentally and on paper?

Algebra & Functions

- How do patterns help us make predictions in mathematics?
- What does it mean to say that two things are 'equal' in mathematics?
- How can we use symbols and expressions to describe relationships?
- How does changing one quantity affect another?
- How do graphs, tables, and equations all represent the same mathematical idea in different ways?
- How can we determine if a mathematical relationship is linear, exponential, or quadratic?

Geometry & Spatial Reasoning

• How do geometric shapes and structures appear in the world around us?

- What do transformations (rotations, reflections, translations) tell us about shapes?
- How do we use measurement and estimation in geometric reasoning?
- Why do we classify shapes, and how do their properties help us solve problems?
- How is geometry used in art, nature, and architecture?
- How does perspective affect the way we see and interpret space?

Measurement & Data

- Why do we measure things, and how do we decide what unit to use?
- How can we estimate measurements without using tools?
- What do graphs and charts tell us about data?
- How can we use data to make predictions or inform decisions?
- How does probability help us understand chance and uncertainty in everyday life?
- What makes a data representation clear, misleading, or useful?

Statistics & Probability

- How can data be represented in multiple ways, and why does it matter?
- How do we determine if data supports a claim or argument?
- What makes a fair or biased sample in statistics?
- How do probability and statistics help us make decisions in everyday life?
- How do we compare different data sets effectively?
- What is randomness, and how do we measure uncertainty?

Mathematical Communication & Connections

- How do different cultures use and understand mathematics?
- How can we communicate mathematical ideas clearly and effectively?
- What makes a mathematical argument valid?
- How does mathematics connect to other subjects and the real world?
- How has mathematics changed over time?

• Why is mathematical notation useful, and how does it help us communicate complex ideas?

COMMON CORE MATHEMATICS PRACTICES, K-12		
Practice Standard	Overarching Understanding	Overarching Question
Make sense of problems and persevere in solving them.	 Mathematicians analyze givens, constraints, and relationships in order to make sense of and solve problems. 	 How do I use the language of math (i.e. symbols, words) to make sense of/solve a problem? What do I already know? What do I still need to find out? How do I get there? What do I do when I get stuck?
Reason abstractly and quantitatively.	 Math is a language of patterns and relationships that can be generalized to a range of given situations and problems. 	 How do we use symbolic representations to apply and extend patterns and relationships? What mathematical symbols, language and materials should we use to communicate with others about numbers and number relationships? Why generalize a relationship/pattern?
Construct viable arguments and critique the reasoning of others.	 Mathematicians make conjectures and build a logical progression of statements to explore the truth of their conjectures. The soundness of a mathematical argument is grounded in the application and articulation of theorems, postulates, rules and/or properties that led to the given conclusion. Mathematicians examine and critique arguments of others to determine validity. 	 What makes a mathematical argument/conjecture/it true? How do I construct an effective (mathematical) argument? How do I develop a conjecture/rule (to represent this pattern, situation, context)? How do I prove something? Is the argument valid?
Model with mathematics.	 Mathematical models can be used to interpret and predict the behavior of real world phenomena being clear about the limitations of that model. 	 What do we use in addition to mathematical modeling to accurately predict results? To what extent can we model and analyze change?

	 Mathematicians create models to interpret and predict the behavior of real world phenomena being clear about the limitations of that model. Recognizing the predictable patterns in mathematics allows the creation of functional relationships. 	 How reliable are our predictions? When does the model work (or not work)? What makes a pattern? How do I find it? How do I show it? Does it always work? How do I create a mathematical model?
Use appropriate tools strategically.	 Mathematicians use a variety of tools to analyze and solve problems and explore concepts. Estimating the answer to a problem helps mathematicians predict and evaluate the reasonableness of a solution. 	 What is an effective tool/technology to solve the problem or understand the concept? Does my answer/solution make sense?
Attend to precision.	 Clear and precise notation enables effective communication and comprehension. Level of accuracy is determined based on the context/situation. 	 How do I show my math thinking? How do I effectively represent quantities and relationships through mathematical notation? How accurate do I need to be? What's at stake?
Look for and make use of structure.	 Recognizing the predictable patterns in mathematics allows the creation of functional relationships. Mathematical structures can be interchangeable while preserving the relationship (i.e. part to whole, substitution). 	 What makes a pattern? How do I find it? How do I show it? Does it always work? What is the best/most effective way to represent this number, concept, or relationship?
Look for and express regularity in repeated reasoning.	 Mathematicians make conjectures looking for both general methods (for abstractions) and shortcuts (for efficiency). 	 What is a faster/more efficient way to do this? What is the best way to get an accurate answer? How do I know which way is best? Why generalize a relationship/pattern?